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PROBLEMS POSED AT THE NOVI SAD ALGEBRAIC
CONFERENCE ’031

Problem 1 (I. Dolinka) The random graph R is the unique (up to isomor-
phism) countable graph which satisfies the following property: for any two finite
disjoint sets A and B of vertices of R there exists a vertex v which is connected
by an edge to each vertex of A and no vertex of B. The partial order of principal
ideals (i.e., of the J -classes) of the endomorphism monoid End(R) was studied
in [1]. The following question remains:

Is there an uncountable well-ordered chain in the partial order of (principal)
ideals of End(R)?
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Problem 2 (M. Erné) If a finite lattice is representable as an interval of topolo-
gies (ordered by inclusion), is it representable as an interval of topologies on a
finite set?
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[3] M. Erné and J. Reinhold, Ordered one-point compactifications, stably continuous frames
and tensors. Quaest. Math. 22 (1999), 63–81.

Problem 3 (M. Erné) From a finite lattice L form the L-context 〈J ,M,≤〉,
with J the set of join-irreducible, and M the set of meet-irreducible elements.
Then build the concept lattice of the complementary context 〈J ,M,�〉. This
gives a kind of negation CL. It is known that the sequence (CnL)n∈ω ends with
a self-negated lattice N, i.e. N ∼= CN, or a pair of mutual negations. Is there a
short, intrinsic characterization of self-negated lattices?
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1Collected by N. Mudrinski, prepared for publication by P. Marković.
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Problem 4 (M. Goldstern) Let L be a lattice. We will say it is 1-order poly-
nomially complete if for all f , f : L → L is a monotone map, then f is a
polynomial function.
Are there infinite 1-order polynomially complete lattices?

Background: A lattice L is order polynomially complete when every monotone
function f : Ln → L is a polynomial function.
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Problem 5 (L. Kwuida) A weakly dicomplemented lattice is an algebra 〈L;∧,∨,
4,∇ , 0, 1〉 of type (2, 2, 1, 1, 0, 0) such that 〈L;∧,∨, 0, 1〉 is a bounded lattice and
the unary operations satisfy
1 x44 ≤ x

2 x ≤ y ⇒ x4 ≥ y4

3 (x ∧ y) ∨ (x ∧ y4) = x

1’ x ≤ x∇∇

2’ x ≤ y ⇒ x∇ ≥ y∇

3’ (x ∨ y) ∧ (x ∨ y∇) = x
This structure arises in Contextual Logic. A primary filter of a weakly dicom-
plemented lattice is a proper filter containing x or x4 for every element x. The
notion of primary ideal is dually defined. The “Prime Ideal Theorem” holds,
namely, if F is a filter which does not intersect an ideal I, then there is a pri-
mary filter G containing F such that G ∩ I = ∅. This is unfortunately not
enough to get a representation theorem. So we pose the following problem.

Let I be an ideal of a weakly dicomplemented lattice and x /∈ I. Is there
any primary filter G such that x /∈ G and G ∩ I = ∅?

Problem 6 (L. Kwuida) The skeleton of a weakly dicomplemented lattice L is
the

S(L) := {x ∈ L | x∇∇ = x}.
From axioms 2’ and 3’ it follows that

(x ∨ x∇) ∧ (x ∨ x∇∇) = x and (x ∨ x∇)∇ = 0.

The skeleton S(L) is an ortholattice (cf. [4]). The idea is to describe congru-
ences of weakly dicomplemented lattices by mean of congruences of their skeleton
(cf. [1]). Is there any description of ortholattice congruences?

More details can be found in [2] and [3].
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Problem 7 (P. Marković) This is the problem of P. Frankl, posed in 1979.
The reference list on this famous question is too long to cite, but it still remains
open today.

Given a finite family F of finite sets, closed under taking unions, F 6= {∅},
does there always exist an element a ∈ ⋃F such that a is an element of at least
half of the sets in F?

An equivalent, alternative statement of this problem is:
Given a finite lattice L, does there always exist a meet-irreducible element

a ∈ L such that |a ↓ | ≤ 0.5|L|?
Problem 8 (Péter Pál Pálfy) Is there a minimal clone that contains infinitely
many binary operations?

Background: A clone of operations is minimal if it is generated by each non-
trivial operation in this clone. (The trivial operations are the projections.)
An essentially minimal clone with infinitely many binary operations has been
constructed by H. Machida and I. Rosenberg [1].
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Problem 9 (M. Ploščica) Let L be a distributive algebraic lattice. The set
F = {x ∈ L | 1 is compact in ↑x} is a filter. Let us define a lattice L′ ≤ L × 2
with the universe L′ = {〈x, i〉 | i = 0 or x ∈ F}. Must L′ be algebraic?

Remark: The problem is connected with the relationship between congruence
lattices of bounded and unbounded lattices. The topological version of this
problem is as follows: Let S be a space having a basis of compact open sets.
Let S′ be the one-point compactification of S. Does S′ have a basis of compact
open sets?

Problem 10 (M. Ploščica) Let V be a finitely generated, congruence distribu-
tive variety. Is it true that for an infinite A ∈ V, the number of compact
elements of the lattice Con(A) is equal to |A|?
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Remark: The conjecture is easily seen to be true for |A| = ℵ0.

Problem 11 (C. Szabó and V. Vértesi) Consider the following algorithmic
question:
Input: Two group terms, t1 and t2.
Question: Are they equal over the symmetric group S4, namely do they agree
at every substitution of elements for variables?

What is the computational complexity of the above question?

Background: Questions of this kind are always in coNP. For the non-
solvable groups the question is coNP-complete, while for nilpotent groups and
for some metacyclic group, particularly A4, it is in P.


