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Problem 1 (I. Dolinka) The random graph R is the unique (up to isomor-
phism) countable graph which satisfies the following property: for any two finite
disjoint sets A and B of vertices of R there exists a vertexr v which is connected
by an edge to each vertex of A and no vertex of B. The partial order of principal
ideals (i.e., of the J-classes) of the endomorphism monoid End(R) was studied
in [1]. The following question remains:

Is there an uncountable well-ordered chain in the partial order of (principal)
ideals of End(R)?
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Problem 2 (M. Erné) If a finite lattice is representable as an interval of topolo-
gies (ordered by inclusion), is it representable as an interval of topologies on a
finite set?
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Problem 3 (M. Erné) From a finite lattice L form the L-context (J, M, <),
with J the set of join-irreducible, and M the set of meet-irreducible elements.
Then build the concept lattice of the complementary context (J, M, %). This
gives a kind of negation CL. It is known that the sequence (C"L),c. ends with
a self-negated lattice N, i.e. N =2 CN, or a pair of mutual negations. Is there a
short, intrinsic characterization of self-negated lattices?
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Problem 4 (M. Goldstern) Let L be a lattice. We will say it is 1-order poly-
nomially complete if for all f, f : L — L is a monotone map, then f is a
polynomial function.

Are there infinite 1-order polynomially complete lattices?

Background: A lattice L is order polynomially complete when every monotone
function f : L™ — L is a polynomial function.
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Problem 5 (L. Kwuida) A weakly dicomplemented lattice is an algebra (L; A, V,
ANV 0,1) of type (2,2,1,1,0,0) such that (L; A, V,0,1) is a bounded lattice and
the unary operations satisfy

1 288 <y 1’z <zVV
2 z<y=azt>y° 2 z<y=za¥>y"
3 (zAy)V(zAy®) =2z 3 (zvy AlzvyY)==x

This structure arises in Contextual Logic. A primary filter of a weakly dicom-
plemented lattice is a proper filter containing x or x* for every element x. The
notion of primary ideal is dually defined. The “Prime Ideal Theorem” holds,
namely, if F' is a filter which does not intersect an ideal I, then there is a pri-
mary filter G containing F such that G N1 = (. This is unfortunately not
enough to get a representation theorem. So we pose the following problem.

Let I be an ideal of a weakly dicomplemented lattice and = ¢ I. Is there
any primary filter G such that x ¢ G and GN 1T = (7

Problem 6 (L. Kwuida) The skeleton of a weakly dicomplemented lattice L is
the

S(L):={xecL|zVV =ux}.
From axioms 2’ and 3’ it follows that
(zVvaV)YA(zvazYY)=z and (zVaz¥)V =0.

The skeleton S(L) is an ortholattice (cf. [4]). The idea is to describe congru-
ences of weakly dicomplemented lattices by mean of congruences of their skeleton
(cf. [1]). Is there any description of ortholattice congruences?

More details can be found in [2] and [3].
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Problem 7 (P. Markovi¢) This is the problem of P. Frankl, posed in 1979.
The reference list on this famous question is too long to cite, but it still remains
open today.

Given a finite family F of finite sets, closed under taking unions, F # {(}},
does there always exist an element a € | J F such that a is an element of at least
half of the sets in F?

An equivalent, alternative statement of this problem is:

Given a finite lattice L, does there always exist a meet-irreducible element
a € L such that |a | | <0.5|L|?

Problem 8 (Péter Pdl Pdlfy) Is there a minimal clone that contains infinitely
many binary operations?

Background: A clone of operations is minimal if it is generated by each non-
trivial operation in this clone. (The trivial operations are the projections.)
An essentially minimal clone with infinitely many binary operations has been
constructed by H. Machida and I. Rosenberg [1].
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Problem 9 (M. Plosc¢ica) Let L be a distributive algebraic lattice. The set
F ={z € L|1 is compact in Ta} is a filter. Let us define a lattice L' <L x 2
with the universe L' = {(x,i)|i =0 or x € F}. Must L' be algebraic?

Remark: The problem is connected with the relationship between congruence
lattices of bounded and unbounded lattices. The topological version of this
problem is as follows: Let S be a space having a basis of compact open sets.
Let S’ be the one-point compactification of S. Does S’ have a basis of compact
open sets?

Problem 10 (M. Ploséica) Let V be a finitely generated, congruence distribu-
tive variety. Is it true that for an infinite A € V, the number of compact
elements of the lattice Con(A) is equal to |A]?
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Remark: The conjecture is easily seen to be true for |A| = N,.

Problem 11 (C. Szabd and V. Vértesi) Consider the following algorithmic
question:
Input: Two group terms, t1 and ts.
Question: Are they equal over the symmetric group Sy, namely do they agree
at every substitution of elements for variables?

What is the computational complexity of the above question?

Background: Questions of this kind are always in coNP. For the non-
solvable groups the question is coNP-complete, while for nilpotent groups and
for some metacyclic group, particularly Ay, it is in P.



